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ADHESIVE CONTACT OF VISCOELASTIC SPHERES: A
HAND-WAVING INTRODUCTION

E. Barthel
Surface du Verre et Interfaces, CNRS=Saint-Gobain,
Aubervilliers, France

G. Haiat
CEA, Laboratoire de Simulation Ultrasonore et de Traitement,
Gif-sur-Yvette, France

We give an overview of the general features of the linear viscoelastic adhesive
contact model. The two main features are (1) a delay between the contraction of
the contact radius and the onset of the indenter retraction, and (2) the enhance-
ment of the adherence force. We emphasize the role played by stress relaxation
within the contact zone in these phenomena and give simple forms of the
viscoelastic adhesive contact equations to account for it. Two characteristic
timescales are identified, respectively associated with the crack tip and the contact
zone. Their asymmetric roles in the growing and receding contact phases is
evidenced. Energy release rates for both phases are calculated together with their
irreversible components.

Keywords: Adhesion; Adherence; Contact mechanics; Linear viscoelasticity; Visco-
elastic crack propagation

INTRODUCTION

Probing the adherence of soft viscoelastic solids, as in the JKR test
[1, 2]; assessing the mechanical properties of polymers in small scale
contact experiments like nanoindentation [3] or AFM [4–6], where
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surface forces interfere; or understanding the adhesion of molten glass
to hot molds all require a model for the adhesive contact of viscoelastic
bodies.

Some time ago, in this same journal, we showed that the Sneddon
method, based on the systematic application of Hankel transforms,
provides wide-reaching insight into the elastic contact problems of axi-
symmetric bodies [7]. Relying on the same method, we have recently
proposed a theory of the adhesive contact within the linear viscoelastic
regime [8, 9]. The aim of the present contribution is to parallel our
previous article on the elastic case [7] with an exposition of the main
ideas behind the adhesive contact of viscoelastic bodies.

Let us recall the main steps in the development of the viscoelastic
adhesive contact theory; a more comprehensive bibliographical list
may be found in Haiat et al. [8] and Barthel and Haiat [9].

In the 1960s, the viscoelastic adhesionless contact problem spurred
a number of efforts to solve it, which finally yielded Ting ’s completely
satisfactory theory in 1966 [10]. The next step, in the 1970s, was taken
by Schapery, who described crack propagation in a viscoelastic me-
dium by embedding a process zone into a linear elastic solid [11–14].
Coupling a viscoelastic crack behavior with an elastic contact has pro-
vided a first category of viscoelastic adhesive contact models [15]. One
further step was taken when Hui et al. coupled a viscoelastic contact
model to a viscoelastic crack model [16], as initially suggested by
Schapery [14]. Their theory, however, is valid for an increasing contact
radius only. Their attempt for a decreasing contact radius proved less
successful [17, 18].

The model for the viscoelastic adhesive contact we have recently
proposed [8] is based on the Sneddon method of Hankel transform
[7]. In a suitable limit [9] it turns out to simply couple Ting’s model
for the adhesionless viscoelastic contact and Schapery’s viscoelastic
crack approach. Under this form, it takes a particularly simple struc-
ture, in close connection with the JKR model [19] for elastic adhesive
contacts. The aim of the present article is to highlight this connection
and to present the main concepts underlying the adhesive linear
viscoelastic contact model.

DESCRIPTION OF THE ADHESIVE CONTACT

The physics of the contact between two bodies is subtle and has to be
simplified to be efficiently accounted for in a mechanical model.
Several paths [20] may be followed for that purpose: one of them is
to assume infinite repulsion at contact, and before contact attractive
interaction between surfaces over some finite range (Figure 1). Then,
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in the adhesive contact, we can identify two zones: in the contact zone,
the surfaces touch each other; outside this zone, in the interaction
zone, tensile stresses are present without contact (Figure. 2).

We now examine the consequence of these assumptions on the
mechanics of the contact.

Boundary Conditions

The Inner Problem: Contact Variables
Inside the contact zone, the fact that the surfaces come into contact

is specified by the following boundary conditions:

FIGURE 1 Typical dependence of the interaction stresses with the gap
(or distance) between surfaces, as assumed in the present contact model.

FIGURE 2 Left: contact zone (radius a) and interaction zone (size e) in a
typical adhesive contact. Right: definition of the dwell time tr.

Adhesive Contact of Viscoelastic Spheres 3

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



uðt; rÞ ¼ dðtÞ � f ðrÞ for r < aðtÞ; ð1Þ

where uðt; rÞ is the normal surface displacement, dðtÞ is the pen-
etration, f ðrÞ is the shape of the indenter, and aðtÞ is the contact
radius. The main variables for the contact problem itself are, thus,
the penetration and the contact radius. The third contact variable,
the force, although often directly measured in practice, plays a less
direct role in the theory, because it is the integral of the surface stress
distribution and therefore specifies the boundary conditions less
directly.

The Outer Problem: The Interaction Zone Variables
Adhesion is expressed by the following boundary conditions:

rðrÞ ¼ �pðrÞ for a < r < ðaþ eÞ
rðrÞ ¼ 0 for ðaþ eÞ < r;

�
ð2Þ

where pðrÞ is a stress distribution relevant to the physics of the ad-
hesive process, rðrÞ is the normal surface stress, and e the size of the
interaction zone (Figure 2).

Self-Consistent Description of the Interaction Zone

In the interaction zone normal surface stress, deformation, and inter-
actions are intimately coupled: the normal surface stress is a function
of the gap between surfaces (Figure 1), which itself depends upon
the surface deformation, which is controlled by the normal surface
stresses. As a result, a self-consistent treatment is required [7, 11].
The final useful equation is typically of the form

w ¼
Z 1

a

drrðrÞdhðrÞ
dr

; ð3Þ

where w is the adhesion energy and hðrÞ is the gap between surfaces.
Although we more or less implicitly assume an interaction potential
here, there is a priori no limitation to generalizing this method to more
complex adhesive phenomena.

The difficult issue here is that the mechanical relation between
stress and surface displacement (and, therefore, the gap hðrÞ) is non-
local, so that explicit expressions for Equation (3) are often intricate.
This treatment is simplified if we assume that the contribution of
the interaction zone surface stresses to the interaction zone surface
deformation dominates the contribution of contact zone stresses. An
equivalent assumption is that the interaction zone size, e, is much
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smaller than the contact radius, a. This is the essence of the JKR limit
[19]. Then, the gap shape is dominated by the adhesive stress-induced
deformations [7], and Equation (3) reduces to

w / r2e

E� ; ð4Þ

in which E� is the reduced modulus defined by Equation (A4) in the
appendix and the proportionality coefficient depends upon the details
of the interaction. Under this form, the form of an elastic energy
release rate, the self-consistency Equation (4) lends itself to a linear
elastic fracture mechanics interpretation. For that purpose, in our for-
malism we introduce a new quantity, gðaÞ, which, as will be shown be-
low, naturally couples the contact and the interaction zones.

On the interaction zone side, gðaÞ, which is defined in the appendix
by Equation (A1), is a function of the interaction stress distribution
pðrÞ (as defined in Equation (2)) only. We have also shown previously
[7] that in the elastic case, Equation (4) can be written

w ¼ 2gðaÞ2

pE�a
: ð5Þ

Therefore, gðaÞ assumes the status of a stress intensity factor. Indeed,
denoting K the interaction zone stress intensity factor at a, we have
shown [9] that

K ¼ �2gðaÞffiffiffiffiffiffi
pa

p : ð6Þ

Thus, the self-consistent treatment of the interaction zone essentially
specifies the stress intensity factor, K or gðaÞ, characteristic of the
adhesive interaction stress distribution. We now discuss how gðaÞ
determines the contact variables.

Coupling the Interaction Zone to the Contact Zone

If the adhesive interaction is zero, then the solution to the contact
problem is the Hertz theory [21] for a spherical indenter (and its
extensions for other geometries), which specifies the penetration, d,
as a function of the contact radius, a. This function, d0ðaÞ, depends
upon the shape of the indenter, f ðrÞ, only. A general approach to the
adhesive contact problem is then to specify the adhesive process and
solve the interaction zone problem. The actual attractive stress distri-
bution is thus determined. However, this attractive stress distribution
pulls on the surfaces and, for a given penetration, increases the
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contact radius. The penetration is then

d ¼ d0ðaÞ þ
2

E� gðaÞ: ð7Þ

This equation shows that for a given contact radius, the additional
term for the penetration is proportional to the adhesive interaction
stress intensity factor, or more directly to gðaÞ. Note that gðaÞ is nega-
tive, so that for a given contact radius a reduction of the penetration
with adhesion is predicted by Equation (7).

Another interpretation of Equation (7) stems from the observation
that the quantity ffiffiffiffiffiffi

pa
p

E�

4
ðd� d0Þ

is the stress intensity factor generated by the additional stress distri-
bution due to the additional flat punch displacement ðd� d0Þ. Then,
Equation (7) states that this stress singularity is cancelled by the
stress singularity due to the outer attractive stress distribution
[22, 23].

The penetration Equation (7) and the force equation [7], which can
be derived from Equation (A9) in the appendix, form the contact
equations that, together with the self consistency Equation (5),
provide the solution to the linear elastic adhesive contact problem.

VISCOELASTIC CONTACT: MAIN RESULTS

We are now in a position to extend the previous model to viscoelastic
behaviour by assuming a delayed elastic behaviour. We introduce
the usual viscoelastic creep, u, and relaxation, w, functions
(Figure 3). Stress, r, and deformation, e, now obey

rðtÞ ¼
Z t

0

dswðt� sÞ de
ds

and

eðtÞ ¼
Z t

0

dsuðt� sÞdr
ds

:

Under suitable conditions [8], this results in the description of the
mechanics in terms of reduced creep, u�, and relaxation, w�, functions.
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As mentioned previously, in the above section ‘‘Self-consistent De-
scription of the Interaction Zone,’’ it is usually reasonable to assume
that the interaction zone problem is local to the crack tip (e < a). Then
contact zone and interaction zone are coupled only through the vari-
able gðaÞ. Under this assumption, we first consider the viscoelastic
crack propagation.

Self-Consistent Crack Problem

The adhesive viscoelastic problem also requires some details of the
physical process giving rise to adhesion. In the present approach, we
suppose a ‘‘double-Hertz’’ interaction zone with characteristic stress,
r0, and adhesion energy, w [24]. This model is similar to a Dugdale
model [22].

We have shown [9] that

gðaÞ ¼ � p
4
r0

ffiffiffiffiffiffiffiffi
2ae

p
: ð8Þ

In the viscoelastic case, time now plays a role so that a local timescale
appears, tr, which is the time required by the crack to move a distance
equal to the interaction zone size, e (Figure 2). As a result, we have a
relation between the crack velocity (or contact radius velocity) da=dt, e,
and tr:

FIGURE 3 Typical time dependence of the viscoelastic stress relaxation, w,
and creep, u, functions.
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da

dt
¼ e

tr
: ð9Þ

Then, we observe [9] that the viscoelastic crack behavior is given by

w ¼ 2gðaÞ2

pa
u�
1ðtrÞ; ð10Þ

where

u�
1ðtÞ ¼

2

t2

Z t

0

ðt� sÞu�ðt� sÞds ð11Þ

when the contact radius increases and

u�
1ðtÞ ¼

2

t2

Z t

0

su�ðt� sÞds ð12Þ

when the contact radius decreases.
We note that the form of Equation (10) is identical to the form of Equa-
tion (5), but the stress intensity factor is calculated from an effective
compliance, u�

1ðtrÞ, which depends upon the crack tip velocity. This ef-
fective compliance amounts to the instantaneous compliance when tr
is zero, is the long-time compliance when tr is infinite, and lies in be-
tween for intermediate tr.

These results, which were arrived at through the treatment of the
full contact problem [9], are comparable with Schapery’s viscoelastic
crack propagation models.

From Equations (10)–(12) the stress intensity factor of the attract-
ive interaction stress distribution can be calculated as a function of
crack tip velocity. The typical behavior is exemplified in Figure 4. This
stress intensity factor has been identified above as the key parameter
in the determination of the penetration, as we now discuss in more
detail.

Penetration

We now couple the viscoelastic crack problem to the viscoelastic con-
tact problem.

Inward (Closing Crack)
We obtain [9] for increasing contact radius

dðtÞ ¼ d0ðaðtÞÞ þ 2gðaðtÞÞu�
0ðtrÞ; ð13Þ
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where

u�
0ðtÞ ¼

1

t

Z t

0

u�ðt� sÞds: ð14Þ

This penetration equation is equivalent to the elastic case (Equation
(7)) provided the effective compliance, u�

0ðtrÞ, is substituted for the
elastic compliance 1=E�. Setting g ¼ 0, we recover the adhesionless
viscoelastic case:

dðtÞ ¼ d0ðaðtÞÞ: ð15Þ

Note that u�
0ðtÞ is larger than u�ð0Þ: due to creep, the penetration cor-

rection is larger than in the elastic case.

Outward (Opening Crack)
For decreasing contact radius, the main term is [9]

1

2

Z t

t�

w�ðt� sÞdd
ds

ds ¼ gðaðtÞÞ: ð16Þ

A corrective term that is not essential to understand the physics of the
adhesive contact has not been included here. The time t� is the time at
which the present contact radius, aðtÞ, was met during the increasing
contact radius phase. Once again, setting g ¼ 0, we recover the adhe-
sionless solution by Ting [10]:

FIGURE 4 Typical stress intensity factor K or gðaÞ dependence upon contact
radius velocity. K decreases with velocity because the material is effectively
softer at lower velocity.
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0 ¼
Z t

t�

w�ðt� sÞdd
ds

ds: ð17Þ

Equation (16) is central to the viscoelastic contact rupture. Comparing
it with Equation (13), we observe that its structure is exactly inverse.
The right-hand side is proportional to the attractive interaction stress
intensity factor. But the viscoelastic effect, instead of scaling the stress
intensity factor with the creep function and the local timescale, tr, now
appears under the form of a convolution of the penetration with the
relaxation function over the full history of the system—that is to
say, between t� and t.

This form of the penetration equation is best explained if the
cancellation of inner and outer stress intensity factors formulation
(See ‘‘Coupling the Interaction Zone to the Contact Zone’’) is retained.
This formulation gives to the left-hand side in Equation (16) the mean-
ing of an inner stress intensity factor at tandaðtÞ, which results from the
flat punch displacement dðtÞ convoluted by the stress relaxation func-
tion, w.

Force

Although the force is a less direct expression of the contact boundary
conditions, it is useful in practice because it is most readily obtained
experimentally.

Introducing f ðd;aÞ ¼ ad�
R a
0 drd0ðrÞ; where the second term

depends only upon the shape of the indenting body, from Equation
(A9) in the appendix, we have

F0ðaÞ ¼ 2E�f0ðaÞ � 2E�f ðd0ðaÞ;aÞ ð18Þ

for adhesionless elastic contact and

FðaÞ ¼ F0ðaÞ þ 4agðaÞ ð19Þ

for an adhesive elastic contact.

Inward
In the viscoelastic case, in the increasing contact radius case the

force is

FðtÞ ¼ 2

Z t

0

w�ðt� sÞdf dðsÞ;aðsÞð Þ
ds

ds; ð20Þ

from which the stress intensity factor may be extracted as
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gðaÞ ¼
R t
0 u

�ðt� sÞ @FðsÞ@s ds� u�ð0ÞF0ðaÞ
4au�

0ðtrÞ
: ð21Þ

From this equation and the self-consistency Equation (10), da=dt can
be extracted, so that by integration aðtÞ, and ultimately dðtÞ, are
known.

For instance, penetration under vanishing external force entails
f dðtÞ;aðtÞð Þ ¼ 0. Therefore,

dðtÞ ¼ a2=3R: ð22Þ

Outward
The force is

F ¼ 2

Z t�

0

w�ðt� sÞdf dðsÞ;aðsÞð Þ
ds

dsþ 4agðaÞ; ð23Þ

from which gðaÞ is directly extracted. Here again, the adhesionless
case is readily obtained.

The Adhesive Viscoelastic Contact: Main Phenomena

The two main phenomena that signal viscoelastic behaviour in the
adhesive contact will now be explained briefly.

The Stick Zone
The first characteristics of the viscoelastic adhesive contact is the

delay between the time when the indenter starts moving backwards
( Figure 5) and the time when the contact radius starts to recede mark-
edly. We called this delay the stick time [9] (Figure 6). It is due to the
fact that, in the region where the contact radius is maximum, the
contact radius velocity is close to zero. Then, the interaction stress
intensity factor and gðaÞ are small (Figure 4). To get significant propa-
gation, we must restore a higher gðaÞj j. This is obtained by the back-
ward motion of the indenter, but the effect is qualified by the stress
relaxation in Equation (16). The condition for propagation is achieved
only when the right-hand member in Equation (16) is large enough,
i.e., when the backward motion of the indenter overcomes the stress
relaxation. This is the origin of the stick time.

Adherence Force Enhancement
The pull-out force in the elastic adhesive contact in the small inter-

action zone size (or JKR) limit is 3=2pRw. Its independence from the
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actual elastic modulus of the contacting bodies is most noteworthy.
It is due to the fact that compressive and tensile stresses within the
contact zone balance each other at pullout.

For viscoelastic bodies, however, the picture is quite different
(Figure 7). Restoring a large stress intensity factor by the motion of
the indenter dðtÞ brings back a sizeable tensile flat punch stress

FIGURE 5 Typical penetration history for an adhesive contact experiment.

FIGURE 6 Typical contact radius history for a penetration history as in
Figure 5. Most prominent is the so-called stick phase, where the contact radius
stays close to constant while the penetration decreases.
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distribution within the contact zone (Figure 8). At the same time, the
compressive stresses within the contact zone have also decayed but
are not restored by the present motion. This is apparent, for instance,
in Equation (23) where the first (compressive) term decays as w�ðtÞ
while the second (tensile), originating from the flat punch tensile
stress distribution, is identical in the elastic case.

Once again neglecting corrective terms in the increasing contact
radius part of the contact, Equation (23) may be written simply as

F ¼ w�ðtÞf0 aðtÞð Þ þ 4ag aðtÞð Þ: ð24Þ

We conclude that the decay of the compressive stress distribution
within the contact zone, and therefore of its contribution to the total
force, leads to the enhancement of the overall adhesive force (Figure 8).

Energy

Energy Release Rate
The energy release rate, which is the mechanical energy expended

in propagating the contact per unit area, is expressed in Equation
(A10) in the appendix as

G ¼ dX
dA

¼ 1

pa
gðaðtÞ; tÞhðaðtÞ; tÞ; ð25Þ

FIGURE 7 Typical behavior of force as a function of time: elastic (dashed) and
viscoelastic (full) for the penetration history in Figure 5. The prominent fea-
ture is the enhancement of the adherence force mainly due to stress relaxation
within the contact zone.
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where the quantity hða; tÞ ¼ dðtÞ � d0ðaÞ is closely connected with the
penetration Equations (7), (13), and (16). G is zero in the absence of
adhesion. If the contact is elastic, Equations (5), (7), and (25) show that
G ¼ w. Since w is the adhesion energy gained from the crack propa-
gation, this equality means reversible propagation.

In the viscoelastic case, let us denote G> the energy release rate for
increasing contact radius. Equation (13) results in

G> ¼ 2gðaðtÞÞ2u�
0ðtrÞ

pa
: ð26Þ

Comparison with Equation (10) shows that for increasing contact
radius (closing crack).

G>

w
¼ u�

0ðtrÞ
u�
1ðtrÞ

� 1: ð27Þ

Mathematically, the G>=w ratio is larger than 1 because u� is a mono-
tonically increasing function. Physically, it means that the propa-
gation of the crack is dissipative. However, we note that equality

FIGURE 8 Typical stress distribution in an adhesive contact (c). It is the lin-
ear superposition of the compressive adhesionless contact stress distribution
for a penetration d0ðaÞ (shown here for a sphere) (a) and the tensile flat punch
distribution (b). The stress singularity in (b) is proportional to the displace-
ment correction d� d0ðaÞ. In the viscoelastic contact, the contact time, t, con-
trols the amplitude of the compressive stress distribution through the stress
relaxation function. A reduced compressive stress distribution leads to an
enhanced adherence force.
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holds when the crack is very fast and also when it is very slow: the sys-
tem is then effectively elastic. Reversibility of the crack propagation at
high velocity is at variance with results by Schapery [11, 12] and, sub-
sequently, Greenwood and Johnson [13]. The reason is that Schapery
assumes the relaxed state as the reference state. With fast cracks,
however, this relaxed reference state is reached nowhere near the
crack tip. Our present estimate of the dissipation is purely local, at
the crack tip; dissipation due to stress relaxation inside the contact
itself, which is also present in the adhesionless contact, is not included
in the present expression for G>.

A similar discussion for the receding contact radius phase is less
straightforward because Equation (16), however approximate, takes
into account the full history of the system. We will, therefore provide
an approximate discussion, restricted to a special case. We assume
that (Figure 5)

1. Loading to the maximum penetration dm is fast,
2. Unloading takes place immediately after loading, and
3. The unloading rate dd=dt is constant.

Then, Equation (16) becomes

gðaðtÞÞ ¼ wðtÞ
2

dm � d0ðaðtÞÞð Þ þ w�
0ðtÞ
2

dðtÞ � dmð Þ; ð28Þ
where

w�
0ðtÞ ¼

1

t

Z t

0

w�ðt� sÞds: ð29Þ

Now 0 < w�ðtÞ < w�
0ðtÞ, so that, since gðaðtÞ; tÞ is negative we have

2gðaðtÞÞ=w�ðtÞ < 2gðaðtÞÞ=w�
0ðtÞ < hðaðtÞ; tÞ < 0;

and hðaðtÞ; tÞ is also negative,

G< >
2gðaðtÞÞ2

paw�ðtÞ : ð30Þ

As a result, in the decreasing contact radius phase (growing crack)

G<

w
� 1

w�ðtÞu�
1ðtrÞ

: ð31Þ

Typically, we may expect the experimental time, t, to be large and tr to
be small, at least when the contact recedes markedly. Then w�

0ðtÞ is of
the order of the relaxed modulus w�ðþ1Þ; Schapery’s relaxed

Adhesive Contact of Viscoelastic Spheres 15

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



reference state is recovered. Simultaneously, u�
1ðtrÞ is of the order of

the instantaneous compliance, 1=w�(0), and [15]

1

w�ðtÞu�
1ðtrÞ

/ w�ð0Þ
w�ðþ1Þ ; ð32Þ

which is much larger than 1 for a significantly viscoelastic material; a
large dissipation appears in the outward phase.

Then G< � w, but equality is restored at slow velocities (for a finite
long-time compliance) or for a loading cycle faster than any typical
relaxation time.

This dissipation can be rationalized in the following manner: the
crack tip, which moves fast with characteristic time tr, feels an effec-
tively harder material (Equation (10)). The flat punch displacement,
however, applies to an effectively softer material, because the
viscoelastic stress relaxation (Equation (28)) applies to the character-
istic time, t. As a result, for the same stress intensity factor, the flat
punch energy release rate is much larger than the crack energy
release rate. The energy difference is dissipated.

DISCUSSION

Within the contact zone, we find both compressive (at the center) and
tensile stresses (at the periphery). The normalized 1.5 adherence force
for an elastic adhesive (JKR [19]) contact results from a balance be-
tween these two stress contributions. For viscoelastic bodies, however,
the stress distribution inside the contact zone relaxes. As a result, the
contact zone does not recede as soon as the indenter is pulled back,
because the stress intensity factor is low, which leads to low contact
radius velocities (Figure 4). One requires sufficient (and sufficiently
fast) backward motion of the indenter to restore a stress
intensity factor large enough for the contact radius to actually
decrease (Equation (16)).

However, this additional tensile stress distribution (a flat-punch-
like stress distribution) does not contribute compressive stresses.
Consequently, the balance between compressive and tensile stresses
one finds in the elastic case is now offset, resulting in an enhanced
adherence force.

CONCLUSION

Two phenomena must be included in a complete model for the adhesive
contact of viscoelastic spheres. Creep in the interaction zone reduces
the stress intensity factor through a larger effective compliance.
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At the same time, stress relaxation inside the contact zone induces
both a time lag between indenter retraction and contact radius
decrease (‘‘stick’’ effect), as well as an enhancement of the adherence
force through unbalance between compressive and tensile stresses.
Our models [8, 9] provides a complete description of this com-
bination of phenomena.
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APPENDIX: SURFACE ELASTICITY—LINEAR VISCOELASTIC
CASE

Equilibrium

Our usual method is to resort to specific transforms of the surface nor-
mal stress, r rð Þ, and surface normal displacement, u rð Þ, distributions,
as suggested by Sneddon [25]. These transforms are
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g rð Þ ¼ �
Z þ1

r

srðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2

p ds; ðA1Þ

h rð Þ ¼ d

dr

Z r

0

suðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � s2

p ds: ðA2Þ

They are easily expressed in terms of the boundary conditions and
simultaneously result in a local equilibrium equation,

gðrÞ ¼ E�

2
hðrÞ; ðA3Þ

where the elastic surface compliance

E� ¼ E

1� m2
ðA4Þ

(Young’s modulus E and Poisson ratio m )1.
This approach contrasts with the direct method in the sense that the
relation between surface stress and surface penetration,

uðsÞ ¼ 1

pE�
pðrÞ
r� sj j ; ðA5Þ

has now been diagonalized.
Boundary conditions determine

hðt; rÞ ¼ dðtÞ � d0ðrÞ for r < aðtÞ: ðA6Þ

In addition, it is easily generalized to the linear viscoelastic case.
Following the standard treatment of linear viscoelasticity as delayed
elasticity, we introduce the reduced creep function, u�ðtÞ, and relax-
ation function, w�ðtÞ. Then, the equilibrium equation for a viscoelastic
contact becomes

gðr; tÞ ¼
Z t

0

w�ðt� sÞdhðr; sÞ
ds

ds; ðA7Þ

or inversely

hðr; tÞ ¼
Z t

0

u�ðt� sÞdgðr; sÞ
ds

ds: ðA8Þ

1Note that in contrast to our previous papers, we will here use the contact mechanics
standard definition E� for the reduced modulus instead of K ¼ E�=2. Similarly, we will
use the notation w� ¼ 2w and u� ¼ 2u, where w and u were the reduced stress and relax-
ation functions in our previous papers. The � notation is used throughout the paper to
denote such reduced quantities, not dynamic material properties.
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Force and Energy Stored

With these notations, we obtain simple expressions for the total force,

F ¼ 4

Z þ1

0

gðrÞdr; ðA9Þ

and total elastic energy stored

X ¼ 2

Z þ1

0

gðrÞhðrÞdr: ðA10Þ
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